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Abstract

General equilibrium models have been used for decades to obtain insights into the
economic implications of policies and decisions. Such models offer a treatment of hu-
man behavior grounded in economic theory that also permits the integration of physical
constraints on human activities. In this paper, we discuss our Community Integrated
Model of Economic and Resource Trajectories for Humankind (CIM-EARTH), includ-
ing a justification of our open-source philosophy and details of our computable general
equilibrium and dynamic stochastic models. Case studies on the international conse-
quences of unilateral carbon policy and solving stochastic optimal growth problems in
parallel are used to illustrate the use of these models.

1 Introduction

Computable general equilibrium (CGE) models (Johansen, 1960, Robinson, 1991, Sue Wing,
2004) and their stochastic counterparts, dynamic stochastic general equilibrium (DSGE)
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models (Del Negro and Schorfheide, 2003), form the backbone of policy analysis programs
around the world and have been used for decades to obtain insights into the economic
implications of policies (Bhattacharyya, 1996, Shoven and Whalley, 1984, de Melo, 1988).
Indeed, hundreds of such models have been built since their introduction (Devarajan and
Robinson, 2002, Conrad, 2001). By computing market prices and the levels of supply and
demand subject to productions constraints, taxes, and transportation costs, these models
can be used to explore such policy-relevant questions as the impact of new tax policies or
increased fossil energy costs on consumers. Moreover, these models form a core component
when studying the interaction between economic activity and the Earth system with an
integrated assessment model (IAM) (Dowlatabadi and Morgan, 1993, Weyant, 2009).

Despite successes, however, these economic models have limitations (Scrieciu, 2007).
Models may not incorporate the industrial or process detail required to answer questions
of interest; costs estimates from different models often differ considerably (Vuuren et al.,
2009, Weyant, 1999, 2006, Friedlingstein et al., 2006, Lee, 2006); and little or no quan-
tification of the uncertainty inherent in their estimates is performed. To understand the
distributional impacts of a carbon emission policy, for example, one needs to represent the
industries, regions, and income groups that may be affected and the complex interactions
between different policies in different regions.

Many limitations of current economic models are due to computational and methodologi-
cal constraints that can be overcome by leveraging recent advances in computer architecture,
numerical methods, and economics research. For example, contemporary models use mathe-
matical formulations, numerical methods, and computer systems that restrict the size of the
models that can be solved in a reasonable time to a few tens of thousands of equations. Thus,
it becomes impractical to add important detail such as increased industrial, geographic, or
temporal resolution; capital vintages; overlapping generations; or stochastic dynamics. Yet
more modern formulations and solvers, and more powerful computer systems, offer the po-
tential to solve systems of equations that are several orders of magnitudes larger. Thus, we
can in principle create models that encompass more details of importance to decision makers
and characterize the model uncertainty. These results can then be used to identify policies
that are robust to model uncertainty.

Motivated by these considerations, we are developing a new modeling framework: the
Community Integrated Model of Economic And Resource Trajectories for Humankind (CIM-
EARTH). Our goal is to facilitate and encourage the creation, execution, and testing of new
economic models with significantly greater fidelity and sophistication than is the norm to-
day. We envision the framework as combining (a) a high-level programming notation that
permits the convenient formulation of a wide range of models with different purposes and
characteristics; (b) a flexible implementation that permits the efficient solution of these mod-
els using the most advanced numerical methods and, where appropriate, high-performance
computer systems; and (c) a suite of associated tools for parameter estimation, uncertainty
quantification, and model validation.

We seek not only to provide access to better economic formulations and numerical meth-
ods but to also encourage the development and use of open models, that is, models that are
both made freely available to all under terms that permit modification and redistribution
and that are designed to facilitate study, modification, application, contribution, and redis-
tribution by others. Open models play an important role in encouraging the application of
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the scientific method of reproducible research within economics and policy studies; increasing
transparency of policy studies; and increasing participation in economic modeling.

In this paper, we describe our open-source philosophy and architecture, our general equi-
librium models, and our initial implementation and its application to some case studies.
Section 2 discusses our philosophy and architecture, the foundation upon which our models
are built. Section 3 describes a basic CGE model and provides a small example with two
industries, one consumer, and four markets to illustrate how these models are specified, the
tax instruments available in our framework, and the myopic dynamics. Section 4 describes
dynamic stochastic models through the use of optimal growth problems and our parallel
dynamic programming methodology. Section 5 details the full CIM-EARTH v0.1 instance,
including our dynamic trajectories for capital, labor productivity, and resource usage; the
results obtained from a study of carbon leakage and the impact of parametric uncertainty;
and preliminary results for our parallel dynamic programming methods on stochastic optimal
growth problems. We conclude in Section 6 with future directions.

2 Philosophy

Open-source software is computer code made available under a license that permits others
to read the software, modify it, and redistribute the modifications. Open-source concepts
grew out of a research ethos that believed in the free exchange of ideas and viewed software
as just another embodiment of ideas. As the range of uses for software has grown, however,
so too have the motivations for open source. A second, increasingly common motivation is
transparency, as when critics argue that the software for electronic voting machines should
be open source, so that anyone can look for faulty assumptions and coding errors. A third
common motivation is competitiveness, as when corporations invest in open-source Linux to
combat Microsoft’s dominance of the operating system market. A fourth motivation is often
cost: many argue that open-source software reduces costs to both producers and consumers
by encouraging contributions from a distributed community. Beyond the world of software,
Chesbrough (2003) argues for the benefits of open innovation and Felten (accessed January
2010) for the “freedom to tinker” that results from open designs and technologies.

All of these arguments are highly relevant to economic and policy studies, given the
complexity of the systems being studied and the magnitude of the decisions that model pro-
jections may influence. Unfortunately, while it is common in economic research for model
data, equations, and implementations to be made available to other researchers, this con-
vention is far from common in policy studies. For example, a recent U.S. Environmental
Protection Agency analysis of the Waxman-Markey Discussion Draft of the American Clean
Energy and Security Act uses two economy-wide models, ADAGE (Ross, 2008) and IGEM
(Wilcoxen, 1988), an integrated assessment model, MiniCAM (Kim et al., 2006), an agri-
cultural model, FASOMGHG (Adams et al., 2005), and an electricity industry model, IPM
(U.S. Environmental Protection Agency Clean Air Markets Division). These models, how-
ever, are not open. No outside party can study, validate, run, or modify the models or
meaningfully compare and contrast the results with other studies. For instance, the EPA
study assumes a 5% discount rate, no international carbon leakage, and monotonic increases
in energy efficiency. What happens if we change these assumptions? Broad study and de-
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Figure 1: The CIM-EARTH framework allows for the rapid creation of applications via the com-
position of existing and new components. Other tools facilitate integration of data from multiple
sources. “Meta-applications” can be invoked to quantify model uncertainty, for example.

bate of these questions are, in our view, essential for scientific progress and transparent and
effective policymaking.

Transparent policy and the scientific method demand, first of all, that software and data
are accessible and understandable. If, in addition, we design software to be modifiable and
extensible, then we also facilitate the reuse of methodologies and tools: a model produced
by one researcher can be tested by others with different data and compared with other
models and extended in new directions. In this way, the barriers to entry for newcomers to
a research field can be reduced, and thus the diversity and quality of the ideas explored can
increase. In a world of closed models, a researcher with a new idea, such as a new approach
to modeling international carbon leakage as a result of carbon taxes, cannot easily evaluate
its effectiveness without developing an entire model from scratch. In a world of open models,
such experimentation becomes significantly easier.

The most successful open models can form the basis for communities of contributors and
users who develop different components and apply the resulting model to different problems.
For example, in climate modeling, the Community Climate System Model (CCSM), devel-
oped by a team led by the National Center for Atmospheric Research (NCAR), is a highly
successful open model. CCSM is downloadable by anyone and is used by many investigators
worldwide. It is the foundation for a vibrant community of both users and developers, who
experiment with alternative formulations of different components and test the model in dif-
ferent scenarios. Clearly the existence of this community is not due solely to openness—it
is a product also of substantial funding and of hard work by NCAR staff—but it is hard to
imagine such a community forming and prospering if CCSM were closed.

Software engineering plays an important role in developing an accessible, understandable,
modifiable, and extensible system. Our overall architecture shown in Figure 1 uses a mod-
ular design, proven numerical libraries from sources such as TAO (Benson et al., accessed
January 2010) and PETSc (Balay et al., 1997), and high-level specification languages. A
parallel scripting language such as Swift (Zhao et al., 2007) can be used to define “meta-
applications” such as sampling studies involving large ensembles or the coupling of multiple
component models. An application is specified via a high-level language that defines the
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type of model (deterministic or stochastic, myopic or forward looking), the size of the model
(regions, industries, consumers, time periods), the details for the industries and consumers
(production and utility functions) and their parametrization (elasticities of substitution),
and the coupling with other system components. In defining this language, we build on
experience with general mathematical programming systems such as AMPL (Fourer et al.,
2003) and GAMS (Brooke et al., 1988) and systems designed more specifically to support
CGE modeling such as GEMPACK (Harrison and Pearson, 1994) and MPSGE (Rutherford,
1999). Each system is widely used, but has limitations. MPSGE models, for example, cannot
include stochastic dynamics. Our tools currently compile an application specification to an
AMPL model that can be read, modified, and solved.

Establishing a fully successful culture of open models in economics research and poli-
cymaking is a complex issue, and we recognize that real success in open modeling requires
more than good software engineering. Above all, it requires a transformation of disciplinary
culture, so that researchers become comfortable producing research using models that have
been constructed by many contributors, funding agencies become comfortable paying for the
development and sustenance of such models, and appointment and promotion committees
become comfortable with interdisciplinary papers having many authors. These changes have
occurred in other disciplines, such as climate science, and we hope to set an example in
economic modeling that others can follow.

3 Computable General Equilibrium Models

Computable general equilibrium models determine prices and quantities over time for com-
modities such that supply equals demand for each good (Ballard et al., 1985, Ginsburgh and
Keyzer, 1997, Scarf and Shoven, 1984). Such models have the following features:

• Many industries that hire labor, rent capital, and buy inputs to produce outputs. Each
industry chooses a feasible production schedule to maximize its profit, the revenue
received by selling its outputs minus the costs of producing them.

• Many consumers that choose what to buy and how much to work subject to the
constraint that purchases cannot exceed income. Each consumer chooses a feasible
consumption schedule to maximize his happiness as measured by a utility function.

• Many markets where producers and consumers trade that set wage rates and commod-
ity prices to “clear” the markets. In particular, if the price of a commodity is positive,
then supply must equal demand.

The primary modeling challenge is estimating the production and utility functions that
characterize the physical and economic processes constraining the supply and demand de-
cisions of industries and consumers. For our CGE models, we use constant elasticity of
substitution (CES) production and utility functions. We detail the calibrated share model
using a simple example to fix notation and discuss the inclusion of taxes and subsidies. We
then describe the myopic dynamic model and our computational framework and numerical
methods.
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3.1 Calibrated Share Model

Calibrated constant elasticity of substitution functions (Boehringer et al., 2003) have the
form

y

ȳ
=

(∑
i

θi

(
γi
xi
x̄i

)σ−1
σ

) σ
σ−1

,

where y
ȳ

is the ratio between the output of the industry to a base year value, xi
x̄i

are the
ratios of the input commodities to their base year values, γi are the efficiency units that
determine how effectively these factors can be used, θi are the share parameters with θi > 0
and

∑
i θi = 1, and σ controls the degree to which the inputs can be substituted for one

another. When σ = 0, we obtain the Leontief production function

y

ȳ
= min

i

{
γi
xi
x̄i

}
,

in which the inputs are perfectly complementary; an increase in output requires an increase
in all inputs. When σ = 1, we obtain the Cobb-Douglas production function

y

ȳ
=
∏
i

(
γi
xi
x̄i

)θi
.

These functions are typically combined in a nested fashion where each nest describes the
substitutability among commodity bundles.

The optimization problems solved by the industries and consumers and the market clear-
ing conditions are then expressed in terms of the dimensionless variables

p =
p

p̄
, x =

x

x̄
, y =

y

ȳ
.

These dimensionless variables represent the change in prices and quantities from their base-
year values. The share parameters are then calibrated so that in the base year p = 1, x = 1,
and y = 1. That is, we choose shares that replicate the base-year revenue and expenditure
data.

We now develop a simple instance with two industries, one consumer, and four markets
to illustrate how these models are specified. The industries produce materials and energy,
respectively. The consumer supplies capital and labor and demands materials and energy.
The four markets are materials, energy, capital, and labor. We consistently use y for supply
variables and x for demand variables, use subscripts to label the commodity or factor being
supplied or demanded, and use superscripts to label either the industry (materials or energy)
or the consumer supplying/demanding the commodity/factor. The variables in the model
are described in Table 1 and the parameters in Table 2. A derivation of the calibrated model
using expenditure and revenue data from the standard model using price and quantity data
can be found in Elliott et al. (2009a).

3.1.1 Industries

Industries maximize profit, revenue minus expenditures, subject to production constraints.
The materials industry in the simple instance demands materials, energy, capital, and labor,
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Table 1: Variables in the simple calibrated CGE example.

pm change in materials price
pe change in energy price
pK change in energy price
pL change in energy price

ym change in quantity of materials supplied by materials industry
ye change in quantity of energy supplied by energy industry
yK change in quantity of capital supplied by consumer
yL change in quantity of labor supplied by consumer

xmm change in quantity of materials demanded by materials industry
xme change in quantity of energy demanded by materials industry
xmK change in quantity of capital demanded by materials industry
xmL change in quantity of labor demanded by materials industry
xeK change in quantity of capital demanded by energy industry
xeL change in quantity of labor demanded by energy industry
xcm change in quantity of materials demanded by consumer
xce change in quantity of energy demanded by consumer

Table 2: Parameters in the simple calibrated CGE example.

σmme elasticity of substitution among materials and energy for materials industry
σmKL elasticity of substitution among capital and labor for materials industry
σm elasticity of substitution among (materials, energy) and (capital, labor) bundles
σeKL elasticity of substitution among capital and labor for energy industry
σcme elasticity of substitution among materials and energy for consumer
σc elasticity of substitution among (materials, energy) bundle and savings for consumer

ēmm base-year expenditure on materials demanded by materials industry
ēme base-year expenditure on energy demanded by materials industry
ēmK base-year expenditure on capital demanded by materials industry
ēmL base-year expenditure on labor demanded by materials industry
ēeK base-year expenditure on capital demanded by energy industry
ēeL base-year expenditure on labor demanded by energy industry
ēcm base-year expenditure on materials demanded by consumer
ēce base-year expenditure on energy demanded by consumer
ēcs base-year expenditure on share parameter for savings demanded by consumer

r̄m base-year revenue from sales of materials
r̄e base-year revenue from sales of energy
r̄K base-year revenue from sales of capital
r̄L base-year revenue from sales of labor
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EnergyMaterials LaborCapital

Output

Figure 2: Basic nest for production function.

while the energy industry demands only capital and labor. In particular, the materials
industry solves the optimization problem

max
ym≥0,xmi ≥0

r̄mpmym − ēmmpmxmm − ēme pexme − ēmKpKxmK − ēmLpLxmL

s.t. ym ≤
(
θmKL(xmKL)ρ

m
+ θmme(x

m
me)

ρm
) 1
ρm

xmKL ≤
(
θmK(xmK)ρ

m
KL + θmL (xmL )ρ

m
KL

) 1
ρm
KL

xmme ≤
(
θmm(xmm)ρ

m
me + θme (xme )ρ

m
me
) 1
ρmme ,

(1)

where ρm = σm−1
σm

, ρmKL =
σmKL−1

σmKL
, and ρmme = σmme−1

σmme
. The production function constraints

in (1) are depicted graphically by the tree structure shown in Figure 2, with each node
representing a production function with its own elasticity of substitution that aggregates
the inputs from below into a commodity bundle. The root node then aggregates the two
intermediate commodity bundles into the total materials output.

The energy industry solves a similar, but simpler optimization problem since it demands
only capital and labor:

max
ye≥0,xei≥0

r̄epeye − ēeKpKxeK − ēeLpLxeL

s.t. ye ≤
(
θeK(xeK)ρ

e
KL + θeL(xmL )ρ

m
KL

) 1
ρm
KL .

3.1.2 Consumers

Consumers maximize their individual utility subject to a budget constraint; expenditures
cannot exceed income. The consumer in the simple instance demands materials and energy,
while supplying capital and labor. The supply of capital and labor is an endowed commodity;
the consumer begins the period with a certain labor endowment and capital accumulated

EnergyMaterials

Utility

Savings

Figure 3: Basic nest for utility function.
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from past savings. In particular, the consumer solves the optimization problem

max
0≤ycj≤1,xci≥0

xc

s.t. xc ≤
(
θcme(x

c
me)

ρc + θcS(xcS)ρ
c) 1

ρc

xcme ≤
(
θcm(xcm)ρ

c
me + θce(x

c
e)
ρcme
) 1
ρcme

ēcSx
c
S + ēcmpmx

c
m + ēcepex

c
e ≤ r̄cKpKy

c
K + r̄cLpLy

c
L + Πm + Πe ,

(2)

where ρc = σc−1
σc

, ρcme = σcme−1
σcme

, and Πm and Πe are the materials and energy industry
profits returned to the consumer as a dividend, respectively. The savings demanded by the
consumer, xcS, is necessary for myopic dynamic models to approximate the future utility of
consumption. These savings are enter the economy as capital in the next time step. In
practice, we choose σc to be one so that the CES function aggregating savings and the
(materials, energy) bundle reduces to the Cobb-Douglas function, which implies that a fixed
share of consumer income goes to savings each year. The utility function constraints in (2)
are depicted graphically by the tree structure shown in Figure 3.

3.1.3 Markets

The market clearing conditions are as follows:

0 ≤ pm ⊥ r̄mym ≥ ēmmx
m
m + ēcmx

c
m

0 ≤ pe ⊥ r̄eye ≥ ēme x
m
e + ēcex

c
e

0 ≤ pL ⊥ r̄LyL ≥ ēmL x
m
L + ēeLx

e
L

0 ≤ pK ⊥ r̄KyK ≥ ēmKx
m
K + ēeKx

e
K .

The complementarity condition signified by ⊥ implies that one of the two inequalities in
each expression must be saturated. That is, either supply equals demand and the price is
nonnegative, or supply exceeds demand and the price is zero. In particular, a zero price
means that the market for the good or factor collapses.

3.1.4 Calibration

Assuming revenues equal expenditures in all industry objective functions, consumer budget
constraints, and market clearing conditions, we can choose values for the share parameters
so that p = 1, y = 1, and x = 1 solves the problem. That is, the prices and quantities do
not deviate from their base-year levels. This process of choosing the share parameters based
on base-year data is referred to as calibration to a base year. In particular, by choosing

θmm = ēmm
ēmm+ēme

θeK =
ēeK

ēeK+ēeL

θme = ēme
ēmm+ēme

θeL =
ēeL

ēeK+ēeL

θmK =
ēmK

ēmK+ēmL
θcK =

ēcK
ēcK+ēcL

θmL =
ēmL

ēmK+ēmL
θcL =

ēcL
ēcK+ēcL

θmKL =
ēmKL

ēmKL+ēmme
θcme = ēcme

ēcme+ē
c
S

θmme = ēmme
ēmme+ē

m
me

θcS =
ēcS

ēcKL+ēcS
,

where ēmKL = ēmK + ēmL , ēmme = ēmm + ēme , and ēcKL = ēcK + ēcL, one can show that p = 1, y = 1,
and x = 1 is a solution.
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3.2 Taxes and Subsidies

Taxes are an important part of an economy and any CGE model. Import and export taxes
play an important role in determining the sizes of bilateral trade flows; domestic taxes
can reallocate economic activity into more socially advantageous efforts; and environmental
taxes can be levied to encourage carbon-neutral behaviors and slow the emission of CO2 and
other harmful pollutants into the atmosphere. Here we detail how taxes are included in the
production, consumption, and investment equations. Subsidies are simply a negative tax
rate. Tax revenues are aggregated into region-specific tax accounts.

3.2.1 Ad Valorem and Excise Taxes

Each industry in the model pays a tax on the value of the goods and factors demanded. Some
taxes, such as the federal gasoline tax, are applied to volumes rather than value. These taxes
modify the expenditure terms in the optimization problems solved by the industries. Using
the materials industry from the simple example, we calculate the expenditure on energy
inputs as

((ēme + s̄me )pe + t̄me )xme ,

where s̄me is the ad valorem tax expenditure and t̄me is the excise tax expenditure. The
distinction between ad valorem and excise taxes matters only as the change in commodity
prices stray from unity and the difference is strongly dependent on the excise tax expenditure.
For example, if the price of a commodity taxed in the base year at 10% doubles, then the
tax revenues will be off by approximately 5% if the incorrect tax representation is used.

3.2.2 Production Taxes

Production taxes are paid by industries on the goods they produce. Using the materials
industry from the simple example, the revenue from materials production becomes

((r̄mm − s̄mm)pm − t̄mm)ym ,

where s̄mm and t̄mm are the ad valorem and excise tax expenditures, respectively. Excise
production taxes may be needed to study the effects of a producer-level carbon tax. For
example, if one charges an emissions tax based on the amount of coal mined rather than the
amount of coal burned to generate energy, then we would need an excise production tax on
mined coal. While carbon may not be priced in this way, the analysis extends to this case.

3.2.3 Income Taxes

Income taxes are subtracted from the consumer incomes at the point of payment. These
taxes have the same form as production taxes but are levied on the consumer revenue terms.
Using consumer capital from the simple example, we calculate the modified revenue term as

((r̄cK − s̄cK)pK − t̄cK)yK ,

where s̄cK and t̄cK are the ad valorem and excise tax expenditures, respectively. We note that
while excise taxes on labor and capital are not likely to be imposed, the modeling framework
does not prevent their inclusion.

10



3.2.4 Import and Export Duties

For international trade, we treat domestic and imported goods as distinct products. Each
region contains an importer for each commodity that buys goods internationally and sells
them domestically. Because the importer inputs commodities from many regions, we need to
distinguish between import and export duties, since the duties are paid at the destination or
origination points, respectively. That is, we must distribute the revenue to the correct region.
Using the materials commodity from the simple example, we calculate the expenditures for
the materials importer in region r′ as((

ēi,r
′

m,r + s̄i,r
′

m,r + s̄e,r
′

m,r

)
pm,r

)
+ t̄i,r

′

m,r + t̄e,r
′

m,rx
i,r′

m,r ,

where s̄i,r
′

m,r and t̄i,r
′

m,r are the ad valorem and excise import duty amounts for materials imported

from region r, respectively, and s̄e,r
′

m,r and t̄e,r
′

m,r are the ad valorem and excise export duty
amounts for materials exported by region r.

3.2.5 Carbon Taxes

Carbon taxes are excise taxes placed on the inputs and outputs of producers and consumers.
Since carbon emissions are free in most of the world, no data is typically available for industry
expenditures on carbon emissions in the base year and we need to compute the taxable
carbon emissions. Using the materials industry from the simple example, we calculate the
expenditure on energy with a carbon tax as

(ēme pe + tme f̄
m
e )xme ,

where tme is the tax rate per emissions unit and f̄me is the taxable base-year emissions units
generated by the materials industry from the use of energy. The emissions factors for simple
carbon taxes are usually based on available energy use volume data.

Carbon taxes on imports and exports are also used for border-tax adjustments on emis-
sions. Using the materials commodity from the simple example, we calculate the border-tax
adjustment for the materials importer in region r′ as

(ēi,r
′

m,rpm,r + ti,r
′

m,rf̄
i,r′

m,r + te,r
′

m,rf̄
e,r′

m,r)x
i,r′

m,r ,

where ti,r
′

m,r and te,r
′

m,r are the import and export duties per emissions unit, respectively, and

f̄ i,r
′

m,r and f̄ e,r
′

m,r are the taxable base-year emissions units for the materials importer. Export
duties are negative when the exporting country refunds the carbon taxes on their exports.

Measuring the emissions units in this case is hard given the difficult carbon accounting
introduced by the fact that the commodity in question may not be produced in the taxing
region. We calculate the carbon content by assuming conservation of carbon. Therefore,
the carbon content of the output is the sum of the carbon content of the inputs used in the
production processes

Cjr ȳjryjr =
∑
ir

Cir x̄
jr
ir
xjrir ,

where C∗ is the carbon content per unit of the commodity, ir is the set of commodities used in
the production of good jr, x̄

jr
ir

is the base-year volume of commodity i used in the production
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of commodity j in region r, and ȳjr is the base-year volume of commodity j produced by
the industry in region r, and xjrir (t).

This expression is written in terms of quantities, whereas most available data is in terms
of expenditures. Therefore, rather than compute the carbon content per commodity unit,
we compute the total carbon budget for the industry measured in terms of the base-year
quantities. In particular, we make the substitution

f̄jr = Cjr ȳjr

to obtain the equivalent system

f̄jryjr =
∑
ir

f̄ir
x̄jrir
ȳir

xjrir .

We typically do not know the base-year volumes x̄jrir and ȳir . In those cases where we do
know the volume data for the base year, however, we directly compute the ratio. In all other
cases, we compute the ratio from available expenditure data,

x̄jrir
ȳir

=
p̄ir x̄

jr
ir

p̄ir ȳir
=
ējrir
R̄ir

≡ Φjr
ir
,

where the expenditure and revenue data for each industry, ējrir and R̄ir , respectively, are
known. Note that if the volume and expenditure data are consistent, the ratios computed
from either will be identical. Therefore, we have

f̄jryjr =
∑
ir

f̄irΦ
jr
ir
xjrir . (3)

We estimate the total carbon budget f̄jr for each industry j in region r by solving the
system of equations (3) for given Φ, x, and y. These amounts are then used in the carbon
tax computations. However, this system has more variables than equations due to the land,
labor, and capital factors. In our model, we ignore the contribution of these factors to the
carbon content by fixing their amounts to zero. We are then left with a square system of
equations having zero as a solution. Therefore, we fix the carbon amounts for the energy
industries using energy volume data and standard conversion factors and solve the reduced
system for the remaining emission factors.

3.2.6 Endogenous Tax Rates

Endogenous taxes rates are required to implement cap-and-trade policies. In this case, the
tax rate is determined within the model so that the cap is not violated. We discuss an
endogenous carbon emissions tax, but other endogenous taxes can be added to the model.
The mechanism for setting the rate is to create a market for emissions having a fixed supply,
with the price of emissions determined so that the demand does not exceed the supply.

In the simple example, an endogenous tax on the emissions from energy consumption
would introduce the constraints

0 ≤ te ⊥ Fe ≥ f̄me xme + f̄ cex
c
e ,
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where te is the endogenous tax rate on energy; Fe is the cap on emissions from energy; and
f̄me and f̄ ce are the taxable base year emissions units generated by the materials industry and
consumer from the use of energy, respectively. In a calibrated model having no endogenous
carbon tax in the base year, we set Fe = f̄me + f̄ ce . Analysis of the entire CGE problem
shows that the tax rate in the base year is then zero. That is, under a business-as-usual
scenario, there is no tax. By using a fraction of the base-year emissions, a positive tax rate
is obtained.

3.3 Myopic Dynamic Models

The simplest dynamic CGE models are myopic, in which the industries and consumers
look only at their current state and do not consider the future. In this case, we solve
a sequence of static CGE models with dynamic trajectories for the factor endowments,
efficiency units, and emission factors. The primary drivers of economic development are
capital accumulation, labor productivity, and resource usage. We use exogenous time-series
forecasts of important economic drivers constructed by extrapolation from historical data,
with forecasts constrained by physical restrictions such as expected fossil reserve availability.
The construction of these trajectories is documented in Section 5.1.

3.4 Computational Framework

Because the optimization problems solved by the industries and consumers are convex in
their own variables and satisfy a constraint qualification, we can replace each with an equiv-
alent complementarity problem obtained from the first-order optimality conditions by adding
Lagrange multipliers on the constraints. If we assume all functions are general constant elas-
ticity of substitution functions, the first-order conditions for the material industry are

Πm ⊥ Πm + ēmmpmx
m
m + ēme pex

m
e + ēmKpKx

m
K + ēmLpLx

m
L − r̄mpmym = 0

0 ≤ ym ⊥ λm − r̄mpm ≥ 0

0 ≤ xmKL ⊥ λmKL − θmKL
(
θmKL(xmKL)ρ

m
+ θmme(x

m
me)

ρm
) 1
ρm
−1

(xmKL)ρ
m−1 λm ≥ 0

0 ≤ xmme ⊥ λmme − θmme
(
θmKL(xmKL)ρ

m
+ θmme(x

m
me)

ρm
) 1
ρm
−1

(xmme)
ρm−1 λm ≥ 0

0 ≤ xmK ⊥ ēmKpK − θmK
(
θmK(xmK)ρ

m
KL + θmL (xmL )ρ

m
KL

) 1
ρm
KL
−1

(xmK)ρ
m
KL−1 λmKL ≥ 0

0 ≤ xmL ⊥ ēmLpL − θmL
(
θmK(xmK)ρ

m
KL + θmL (xmL )ρ

m
KL

) 1
ρm
KL
−1

(xmL )ρ
m
KL−1 λmKL ≥ 0

0 ≤ xmm ⊥ ēmmpm − θmm
(
θmm(xmm)ρ

m
me + θme (xme )ρ

m
me
) 1
ρmme
−1

(xmm)ρ
m
me−1 λmme ≥ 0

0 ≤ xme ⊥ ēme pe − θme
(
θmm(xmm)ρ

m
me + θme (xme )ρ

m
me
) 1
ρmme
−1

(xme )ρ
m
me−1 λmme ≥ 0

0 ≤ λm ⊥
(
θmKL(xmKL)ρ

m
+ θmme(x

m
me)

ρm
) 1
ρm − ym ≥ 0

0 ≤ λmKL ⊥
(
θmK(xmK)ρ

m
KL + θmL (xmL )ρ

m
KL

) 1
ρm
KL − xmKL ≥ 0

0 ≤ λmme ⊥
(
θmm(xmm)ρ

m
me + θme (xme )ρ

m
me
) 1
ρmme − xmme ≥ 0 ,
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for the energy industry are

Πe ⊥ Πe + ēeKpKx
e
K + ēeLpLx

e
L − r̄epeye = 0

0 ≤ ye ⊥ λe − r̄epe
0 ≤ xeK ⊥ ēeKpK − θeK

(
θeK(xeK)ρ

e
KL + θeL(xmL )ρ

m
KL

) 1
ρm
KL
−1

(xeK)ρ
e
KL−1 λe ≥ 0

0 ≤ xeL ⊥ ēeLpL − θeL
(
θeK(xeK)ρ

e
KL + θeL(xmL )ρ

m
KL

) 1
ρm
KL
−1

(xeL)ρ
e
KL−1 λe ≥ 0

0 ≤ λe ⊥
(
θeK(xeK)ρ

e
KL + θeL(xmL )ρ

m
KL

) 1
ρm
KL − ye ≥ 0 ,

and for the consumer are

0 ≤ xc ⊥ λc − 1 ≥ 0

0 ≤ xcme ⊥ λcme − θcme
(
θcme(x

c
me)

ρc + θcS(xcS)ρ
c) 1

ρc
−1

(xcme)
ρc−1 λc ≥ 0

0 ≤ xcS ⊥ ēcSµc − θcS
(
θcme(x

c
me)

ρc + θcS(xcS)ρ
c) 1

ρc
−1

(xcS)ρ
c−1 λc ≥ 0

0 ≤ xcm ⊥ ēcmpmµc − θcm
(
θcm(xcm)ρ

c
me + θce(x

c
e)
ρcme
) 1
ρcme
−1

(xcm)ρ
c
me−1 λcme ≥ 0

0 ≤ xce ⊥ ēcepeµc − θce
(
θcm(xcm)ρ

c
me + θce(x

c
e)
ρcme
) 1
ρcme
−1

(xce)
ρcme−1 λcme ≥ 0

0 ≤ ycK ≤ 1 ⊥ −r̄cKpKµc
0 ≤ ycL ≤ 1 ⊥ −r̄cLpLµc
0 ≤ λc ⊥

(
θcme(x

c
me)

ρc + θcS(xcS)ρ
c) 1

ρc − xc ≥ 0

0 ≤ λcme ⊥
(
θcm(xcm)ρ

c
me + θce(x

c
e)
ρcme
) 1
ρcme − xcme ≥ 0

0 ≤ µc ⊥ r̄cKpKy
c
K + r̄cLpLy

c
L − ēcSxcS − ēcmpmxcm − ēcepexce + Πm + Πe ≥ 0 .

The correct first-order optimality conditions are used when Leontief and Cobb-Douglas func-
tions are present. These optimality conditions in combination with the market clearing
conditions

0 ≤ pm ⊥ r̄mym ≥ ēmmx
m
m + ēcmx

c
m

0 ≤ pe ⊥ r̄eye ≥ ēme x
m
e + ēcex

c
e

0 ≤ pL ⊥ r̄LyL ≥ ēmL x
m
L + ēeLx

e
L

0 ≤ pK ⊥ r̄KyK ≥ ēmKx
m
K + ēeKx

e
K

form a square complementarity problem that can be solved by applying a generalized Newton
method, such as PATH (Dirkse and Ferris, 1995, Ferris and Munson, 1999, 2000).

PATH is a sophisticated implementation of a Josephy-Newton method that solves a
linear complementarity problem at each iteration using a variant of Lemke’s method to
obtain a direction and then searches along this direction to obtain sufficient decrease in a
merit function. Many enhancements have been made to the code, including the addition
of preprocessing techniques to automatically improve the model formulation and crashing
methods to rapidly approximate the active set.

The initial version of our framework has been implemented in the AMPL modeling lan-
guage (Fourer et al., 2003). This language is convenient for expressing large optimization
problems and includes convenient notation for sets and algebraic constraints. It also com-
putes all the derivative information needed by the PATH solve when calculating a solution.
We have coded the calibrated share form with all the tax and subsidy instruments and im-
plemented the calibration procedure given expenditure data. The models are processed to
check consistency and eliminate small industries. Once the processing is complete, either a
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scalar AMPL model can be emitted and checked by the user, or the model can be solved by
applying the PATH algorithm. The construction of the first-order optimality conditions for
the industry and consumer problems is completely automated. Summary reports are written
to user-defined files.

4 Dynamic Stochastic Models

In this section, we describe optimal growth problems that illustrate the economic elements of
dynamic stochastic general equilibrium models. We then outline the computational strategies
we use to solve them.

4.1 Optimal Growth Problems

The simplest optimal growth model is the deterministic, discrete-time infinite-horizon opti-
mal growth model, which solves the problem:

V (k0) =

 max
c,l,k

∞∑
t=0

βtu(ct, lt)

s.t. kt+1 = F (kt, lt)− ct ∀t ≥ 0 ,

where kt is the capital stock at time t with k0 given; lt is the labor supply; ct is the consump-
tion; F (k, l) = k + f(k, l), where f(k, l) is the aggregate net production function; u(ct, lt) is
the utility function; and β is the discount factor.

In the comparable stochastic optimal growth model, we let θ denote the current produc-
tivity level and f(k, l, θ) denote net output. Define F (k, l, θ) = k + f(k, l, θ), and assume
θ follows the stochastic law θt+1 = g(θt, εt), where εt are i.i.d. disturbances. Then the
infinite-horizon discrete-time optimization problem becomes

V (k0, θ0) =


max
c,l,k

E

{
∞∑
t=0

βtu(ct, lt)

}
s.t. kt+1 = F (kt, lt, θt)− ct + εt ∀t ≥ 0

θt+1 = g(θt, εt) ∀t ≥ 0 ,

where k0 and θ0 are given and E{. . . } is the expectation conditional on current information,
θ represents the productivity level, and εt and εt are independent i.i.d. disturbances. Both
models model can be extended to include heterogeneous types of capital and labor.

A generic, infinite-horizon, optimal decision-making problem has the following general
form:

V (x0) = max
at∈D(xt)

E

{
∞∑
t=0

βtu(xt, at)

}
,

where xt is the state process with initial state x0, D(xt) is the set of possible actions, at is
the action taken, and β is the discount factor.
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4.2 Dynamic Programming

Optimal growth models are examples of dynamic programming problems that can be formu-
lated as solutions to the Bellman equation. The dynamic programming (DP) model for the
generic infinite-horizon problem is

V (x) = max
a∈D(x)

u(x, a) + βE{V (x+) | x, a} ,

where x is the state variable, a is the action variable, x+ is the next-stage state conditional
on the current-stage state x and the action a, and V (x) is the value function. We solve these
dynamic program problems with value function iteration methods that incorporate efficient
methods for optimization, quadrature, and function approximation.

The value function is typically a continuous function if the state and control variables are
continuous. Since computers cannot model arbitrary continuous functions, we use a finitely
parameterizable collection of functions to approximate the value function, V (x) ≈ V̂ (x;b),
where b is a vector of parameters. The functional form V̂ may be a linear combination of
polynomials, may represent a rational function or neural network, or may be some other
parameterization specially designed for the problem. After the functional form is fixed, we
focus on finding the vector of parameters, b, such that V̂ (x;b) approximately satisfies the
Bellman equation (Judd, 1998).

The following is the value function iteration algorithm for infinite-horizon problems.

Algorithm 4.1 Value Function Iteration for Infinite-Horizon Problems

Initialization. Choose the approximation grid, X = {xi : 1 ≤ i ≤ m}, and choose a
functional form for V̂ (x;b). Make an initial guess V̂ (x;b0), and choose a stopping
tolerance τ > 0. Let t = 0.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi)

u(xi, ai) + βE{V̂ (x+
i ;bt) | xi, ai}

for each xi ∈ X, 1 ≤ i ≤ m.

Step 2. Fitting step. Using the appropriate approximation method, compute the bt+1 such
that V̂ (x;bt+1) approximates the (xi, vi) data.

Step 3. Termination step. If ‖V̂ (x;bt+1)− V̂ (x;bt)‖ < τ , then stop. Otherwise, increment
t, and go to Step 1.

An approximation scheme consists of two parts: basis functions and approximation nodes.
Approximation nodes can be chosen as uniformly spaced nodes, Chebyshev nodes, or some
other specified nodes. From the viewpoint of basis functions, approximation methods can
be classified as either spectral or finite-element methods. A spectral method uses globally
nonzero basis functions φj(x) such that V̂ (x) =

∑n
j=0 cjφj(x) is the degree-n approximation.

We present Chebyshev polynomial approximation as an example of spectral methods. In
contrast, a finite-element method uses locally basis functions φj(x) that are nonzero over
subdomains of the approximation domain. For detailed discussions of approximation meth-
ods, see Cai (2009) and Judd (1998).
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Chebyshev Polynomial Approximation Chebyshev polynomials on [−1, 1] are defined
as Tj(x) = cos(j cos−1(x)), while general Chebyshev polynomials on [a, b] are defined as
Tj
(

2x−a−b
b−a

)
for j = 0, 1, 2, . . .. These polynomials are orthogonal under the weighted inner

product:

〈f, g〉 =

∫ b

a

f(x)g(x)w(x)dx

with the weighting function

w(x) =

(
1−

(
2x− a− b
b− a

)2
)−1/2

.

We approximate V with the least-squares polynomial approximation with respect to the
weighting function, that is, a degree-n polynomial V̂n(x), such that

V̂n(x) ∈ arg min
deg(V̂ )≤n

∫ b

a

(
V (x)− V̂n(x)

)2

w(x)dx .

The least-squares degree-n polynomial approximation V̂n(x) on [−1, 1] has the form

V̂n(x) =
1

2
c0 +

n∑
j=1

cjTj(x),

where

cj =
2

π

∫ 1

−1

V (x)Tj(x)√
1− x2

dx ∀ j = 0, 1, . . . , n

are the Chebyshev least-squares coefficients.

Multidimensional Tensor Chebyshev Approximation In a d-dimensional approxi-
mation problem, let a = (a1, . . . , ad) and b = (b1, . . . , bd) with bi > ai for i = 1, . . . , d.
Let x = (x1, . . . , xd) with xi ∈ [ai, bi] for i = 1, . . . , d. For simplicity, we denote this set as
x ∈ [a, b]. Let α = (α1, . . . , αd) be a vector of nonnegative integers. Let Tα(z) denote the ten-
sor product Tα1(z1) · · ·Tαd(zd) for z = (z1, . . . , zd) ∈ [−1, 1]d. Let (2x−a− b)./(b−a) denote

the vector
(

2x1−a1−b1
b1−a1 , . . . , 2xd−ad−bd

bd−ad

)
. Then the degree-n tensor Chebyshev approximation

for V (x) is

V̂n(x) =
∑

0≤αi≤n,1≤i≤d

cαTα ((2x− a− b)./(b− a)) .

Multidimensional Complete Chebyshev Approximation Tensor product approxi-
mations are expensive to use. Instead we use the degree-n complete Chebyshev approxima-
tion for V (x), which is

V̂n(x) =
∑

0≤|α|≤n

cαTα ((2x− a− b)./(b− a)) ,
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where |α| denotes
∑d

i=1 αi for the nonnegative integer vector α = (α1, . . . , αd). We know the

number of terms with 0 ≤ |α| =
∑d

i=1 αi ≤ n is
(
n+d
d

)
for the degree-n complete Chebyshev

approximation in Rd, while the number of terms for the tensor Chebyshev approximation is
(n + 1)d. The complexity of computation of a degree-n complete Chebyshev polynomial is
much less than the complexity of computing a tensor Chebyshev polynomial in Rd.

4.3 Parallelization

Numerical dynamic programming problems can require weeks or months of computation to
solve high-dimensional problems because of the “curse of dimensionality” arising from the
number of optimization problems in each maximization step of Algorithm 4.1. That is, we
must compute

vi = max
ai∈D(xi)

u(xi, ai) + βE{V̂ (x+
i ;bt) | xi, ai}

for each continuous state point xi in the finite set Xt ⊂ Rd. However, this maximization step
is naturally parallelizable. Using modern parallel architectures, we can therefore reduce the
computation time to solve these problems.

We use the Master-Worker paradigm for our parallel numerical DP algorithms. This
paradigm consists of two entities: a master and many workers. The master manages decom-
posing the problem into small tasks, queueing and distributing the tasks among the workers,
and collecting the results. The workers each receive a task from the master, perform the
task, and then send the result back to the master. A file-based, remote I/O scheme can be
used as the message-passing mechanism between the master and the workers.

5 Case Studies

We illustrate the capabilities of a first version of this framework by presenting the results
of a study of the impact of carbon leakage and border-tax adjustments and the numerical
performance of parallel dynamic programming methods on stochastic optimal growth models.

5.1 CIM-EARTH CGE Model

We begin with a detailed description of the CIM-EARTH v0.1 model we have built for
testing and development. The model is written in the AMPL modeling language (Fourer
et al., 2003); scalar versions of some instances used in the case studies are available at
www.cim-earth.org.

5.1.1 Regions and Industries

The regional and industrial resolution of the CIM-EARTH v0.1 model is shown in Table 3.
This particular aggregation was chosen to study carbon leakage, the impact of a unilateral
carbon emissions policy on the global movement of industrial production capacity away from
that region. Therefore, the model contains more detailed resolution in the energy-intensive
industries and in the industries that provide transport services to importers to move goods
around the world.
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Table 3: Aggregate regions and industries for the 16×16 model used here.

Regions Industries (per region)

Oceania Agriculture and forestry
Southeast Asia Coal
Japan Oil
Rest of East Asia Natural gas
India Iron and steel
Rest of South Asia Chemicals
Russia, Georgia & Asiastan Nonferrous metals
Middle East & N. Africa Cement/mineral products
Sub-Saharan Africa Other manufacturing
Western Europe Refined petroleum
Rest of Europe Electricity
Brazil Land transport
Mexico Air transport
Rest of Latin America Sea transport
USA Government services
Canada Other services

This model does not contain a government consumer; it contains only a producer of
government goods and services, which include defense, social security, health care, and ed-
ucation. Industries and consumers demand these government goods and services. The
government producer is treated like any other producer and is subject to ad valorem and
excise taxes. All taxes collected by a region are returned to consumers in that region.

Trade among regions is handled through importers of each commodity in each region. The
importers buy commodities both domestically and internationally, transport these commodi-
ties, and sell the imports to producers and consumers. Domestic production and imports are
treated as separate commodities traded in different markets. We use three types of trans-
portation: land transportation, including freight by trucks and pipelines; air transportation;
and sea transportation. Each of these transport services is an industry/commodity in the
model. However, since the importers do not care about the origination of the transport
services, we model international transportation as a homogeneous commodity having one
global price; each region supplies some amount of transportation services.

5.1.2 Production Functions

The production functions in each region have the nested structure shown in Figure 4. As
before, each node represents a CES function aggregating the production factor branches
coming into it from below. We use elasticities of substitution taken from the CGE literature
for the producers and consumers. In particular, we use the same elasticities of substitution
as the EPPA (MIT Joint Program on the Science and Policy of Global Change, accessed
January 2010) and GTAP (Ianchovichina and McDougall, 2000) models.

The importers are modeled like other producers using the nested CES production func-
tion shown at the bottom right of Figure 4. We use a Leontief production function to
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aggregate between the imported good and the relevant total transport margin so that the
amount of transport demanded scales with the amount of the good imported. We use a
subnest to represent the importer use of air, land, and sea transport with a small elasticity
of substitution, σ = 0.2.

We use the GTAP database for the base-year revenues and expenditures. In particular,
our share parameters are calibrated with the GTAP v7 database of global expenditure values
for 2004 (Gopalakrishnan and Walmsley, 2008). Emission amounts are obtained from the
energy volume information in GTAP-E (Burniaux and Truong, 2002).

5.1.3 Dynamic Trajectories

We solve a myopic general equilibrium model with dynamic trajectories for the factor endow-
ments and efficiency units. Thus far we have prototyped exogenous statistical trend forecasts
for labor endowment, labor productivity, energy efficiency, agricultural land endowment, land
productivity (yield), and fossil resource availability and extraction technology. These simple
dynamics provide a stable basis for model testing. We now describe several examples of
these dynamic trajectories in more detail.

Capital Accumulation We use a perfectly fluid model of capital with a 4% yearly depre-
ciation rate. Investment contributes to consumer utility, with investment amounts calibrated
to historical data. Investment enters the consumer utility function in a Cobb-Douglas nest
with the government services and consumption bundles, implying that a fixed share of con-
sumer income in each year goes to government services, investment, and consumption. In
particular, the consumer buys the output from an industry that produces capital goods. This
industry behaves as any other, demanding material goods and services in order to produce
the capital good. This industry, however, does not demand capital, labor, or energy. By far
the largest expenditure of the capital goods industry is on construction services, reflecting
the fact that most capital is buildings, with sizable demands from other industries, such as
machinery, transport equipment, and computing equipment.

The capital endowment in the next period is obtained from the dynamic equation

ȳcK,t+1 = (1− δ)ȳcK,t +
x̄cI,0
ȳcK,0

xI,t

where the capital depreciation rate, δ, is exogenously specified and the ratio in the equation
is available from data, with the boundary condition ȳcK,0 = 1.

Labor Productivity Another primary economic driver is population growth and increased
labor productivity. We use population data from 1950 to 2008, with forecasts to 2050, from
the 2008 United Nations population database (U.N. Population Division). Historical eco-
nomic activity rates, the fraction of people that participate in the economy either with a job
or looking for a job, from 1980 to 2006 are taken from the International Labor Organization
(International Labor Organization Department of Statistics), along with projections to 2020.
We combine these projections to estimate the labor endowments in each region.

Increasing productivity is modeled by inclusion of a productivity factor γL multiplying
the labor endowment in the consumer problem, where γL(t) is the labor productivity in
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Figure 5: World conventional oil (left), gas (middle), and coal (right) depletion profiles.

year t and is tuned exogenously to match forecasts extrapolated from historical trends.
In particular, we extrapolate the year-on-year growth rates in labor productivity to have
constant mean and variance consistent with historical data from the U.S. Bureau of Labor
Statistics International Labor Comparisons Division and from the OECD Statistics Division.
Since this data covers only a subset of countries and economic regions, we group regions into
three categories based on their recent growth rates and assume that regions in each category
with unknown data share the same mean productivity rates as the remaining regions with
known data.

Resource Usage Crude fossil extraction, reserves, depletion, and backstops are vital in
understanding how energy demand is met. Based on a simple fossil resource depletion model,
we forecast Gaussian extraction curves fit to historical data for model regions independently,
constrained to give future extraction equal to existing fossil reserves. This model combines
forecasts of new reserve discoveries with advancing extraction technologies to predict the
extraction curves. This representation is straightforward for conventional fossil fuel indus-
tries because the technologies are well developed and detailed global historical data exists.
Figure 5 shows the sum of all regional extrapolations for oil, gas, and coal resources.

The remaining global conventional crude oil in our trajectory is about 1.6 trillion barrels
(Tbbl), which is near the median of expert estimates in the standard literature. The 2007
WEC Survey of Energy Resources (Caill, 2007) estimates global remaining resources of
conventional crude plus proved reserves at about 1.8 Tbbl, though questions remain as to
how much will be ultimately extractable. We have used simple, symmetric curves for these
fits, implying a smooth fall-off of extraction rates as reserves deplete. The remaining global
conventional gas in our trajectory is about 371 trillion m3, which is near the 2007 WEC
estimate of 386 trillion m3.

Forecasts for coal depletion are more ambiguous, with high estimated resources to proved
reserves ratio and serious questions about what percentage will be technologically recoverable
and at what rates. The sum of coal reserves we use in our trajectory is 1.4 trillion tonnes of
ultimately extractable coal resource remaining in the ground. The estimate amounts to an
assumption of only about 25% of the existing coal resources being ultimately recoverable,
which is at the low end of estimated recoverable resources. This outcome is considered
relatively unlikely, though not impossible.
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Table 4: 2020 fossil fuel CO2 difference accounting for the AB scenario with a uniform 105$/tC
(USD per tonne carbon) tax starting in 2012 versus the BAU scenario. Changes in measured carbon
flows are in millions of tonnes. Percent changes are shown in (); reductions in carbon flows relative
to baseline are shown in green, increases in red.

AB-105 Annex B Non Annex B
vs. BAU USA EU RUS JAZ CAN CHK LAM ROW Prod.

USA
-1936.98 -65.95 -2.69 -29.30 -44.76 -53.06 -85.71 -45.45 -2263.89
(-29.03) (-22.87) (-25.51) (-30.31) (-25.10) (-31.05) (-34.06) (-34.14) (-29.02)

EU
-82.63 -1232.11 -16.69 -13.14 -5.66 -33.85 -20.26 -126.70 -1531.05

(-25.18) (-22.22) (-21.64) (-21.22) (-19.03) (-27.12) (-27.33) (-33.61) (-23.14)

RUS
-46.03 -178.93 -930.46 -10.40 -1.76 -96.66 -22.29 -80.12 -1366.67

(-38.15) (-34.72) (-29.44) (-35.69) (-35.15) (-47.31) (-50.73) (-42.02) (-32.01)

JAZ
-11.07 -10.70 -0.70 -534.67 -1.53 -63.32 -3.09 -32.44 -657.53

(-17.67) (-17.25) (-21.06) (-29.37) (-24.11) (-30.32) (-26.20) (-31.74) (-28.87)

CAN
-61.35 -7.30 -0.25 -1.75 -118.22 -4.65 -2.48 -3.12 -199.12

(-23.87) (-20.46) (-18.62) (-20.71) (-23.23) (-23.28) (-23.57) (-24.07) (-23.29)

CHK
42.43 50.14 5.54 36.98 5.42 29.81 12.47 27.82 210.60
(5.64) (6.39) (8.49) (7.61) (7.26) (0.24) (7.53) (3.65) (1.34)

LAM
131.44 27.27 3.54 1.41 6.51 2.96 101.93 4.50 279.55
(43.03) (19.91) (36.87) (6.93) (35.15) (4.63) (5.26) (7.72) (10.97)

ROW
61.73 161.39 8.61 71.94 3.80 41.92 11.45 291.76 652.60

(19.36) (23.17) (16.72) (24.62) (14.96) (6.29) (15.47) (3.80) (6.66)

Cons.
-1902.47 -1256.19 -933.10 -478.93 -156.20 -176.86 -7.99 36.24 -4875.51
(-21.58) (-15.58) (-27.61) (-17.01) (-18.44) (-1.26) (-0.31) (0.39) (-9.78)

5.1.4 Carbon Policy Study

We report in Elliott et al. (2010) on a study of carbon leakage under various global scenarios
of climate change mitigation policy. We consider four classes of scenarios in this study: a
business-as-usual scenario with no climate policy (BAU); a fully global scenario where every
country prices carbon (UN); a scenario in which only Annex B countries price carbon (AB);
and a scenario with carbon pricing in Annex B regions and full border-tax adjustments
applied to imports and exports (AB-BTA). In each of the scenarios with carbon pricing, we
use uniform carbon prices with values ranging from 10$/tC to 175$/tC (2004 USD per tonne
carbon).

To compute the carbon content of the imports for the AB-BTA scenario, we approxi-
mately solve (3) by constructing a hierarchy of carbon contributions: primary direct carbon
is emitted from consumption of crude energy commodities (coal, oil, and gas); secondary
direct carbon from the consumption of processed crude petroleum products such as gasoline
and petroleum coke; primary indirect carbon from consumption of electricity; and secondary
indirect carbon from consumption of energy intensive materials such as steel, chemicals, ce-
ment, and nonferrous metals. We also include other secondary indirect carbon contributions
from less energy-intensive industries. Full details on this approximation can be found in
Elliott et al. (2010).

We then define a carbon flow matrix to collect the results of the simulations. Table 4
shows the carbon difference matrix the AB scenario with a carbon price of 105$/tC (AB-
105) relative to the BAU scenario. The upper-left block of the matrix shows decreased
trade among the taxing regions, while the lower-right block shows increased trade among
the nontaxing regions. Increases in imports of carbon from the nontaxing regions due to
carbon leakage are shown in the lower-left block. In particular, carbon consumption for all
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Figure 6: (Left) Global emissions from fossil fuel consumption for 5,000 model runs with perturbed
substitution elasticities and (right) the relative sensitivity of global CO2 emissions. Each gray line
is a single simulated trajectory, and the black line is the mean. The dark and light blue shaded
areas encompass one and two standard deviations from the mean, respectively.

taxing regions (direct and virtual) falls much more slowly than carbon production due to
carbon leakage. Depending on how the goal for an emissions target is defined, the fact can
change the necessary carbon price target by as much as 15-20%. The addition of border-tax
adjustments has a small, but not insubstantial, effect.

The results of this study are uncertain due to the propagation of errors from the input
data set, the GTAP I/O matrices, and key model parameters, the elasticities of substi-
tution. Using an instance of the model having slightly different dynamic trajectories, we
report in Elliott et al. (2009b) on a study of these errors. When studying the errors due
to misspecification of the elasticity of substitution parameters, we synthesized estimates for
capital-labor substitution from several sources and simulated large portions of the relevant
parameter space, focusing on parameter distributions centered on Cobb-Douglas for ease of
comparison with other recent studies (Sokolov et al., 2009). In addition to the 16 capital-
labor substitutions for each industry, we also looked at the 16 Armington trade elasticities,
the 16 substitution elasticities for the import/domestic consumption decision, and 23 other
substitutions parameters from the nested functions depicted in Figure 4, such as energy-
materials substitution and the substitutability between fossil energy inputs such as coal and
natural gas. We considered symmetric Gaussian distributions with standard deviations set
universally at 20% of mean values taken from a variety of sources (Balistreri et al., 2003,
Paltsev et al., 2005, Liu et al., 2004). We performed an ensemble simulation using 5,000
uncorrelated draws from the full multivariate distribution and another ensemble of 1,000
draws to study a key subset, the Armington elasticities. In all the studies we explored model
output variables at a wide range of regional and industrial scales in order to get a full view
of the impacts of data and parameter error on forecast results. Figure 6 shows an example
of such a sensitivity measurement for global CO2 emissions.

5.2 Parallel Stochastic Optimal Growth Problems

DPSOL is parallel dynamic programming solver being developed by Cai and Judd (Cai, 2009,
Cai and Judd, 2010). This solver uses the Condor system, an open-source software framework
for high-throughput, distributed parallelization of computationally intensive tasks on a farm
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of computers developed by the Condor team at the University of Wisconsin-Madison. Condor
acts as a resource manager for allocating and managing the computers available in the pool
of machines.

This algorithm is implemented by using the Condor Master-Worker (MW) implemen-
tation. The Condor MW implementation circumvents the typical parallel programming
hurdles, such as load balancing, termination detection, and distributing algorithm control
information to the compute nodes. Moreover, the computation in the MW system is fault-
tolerant: if a worker fails in executing a portion of the computation, the master simply
distributes that portion of the computation to another worker, which can be an additional
worker available in the pool of computers. Furthermore, the user can request any number
of workers, independent of the number of tasks. If the user requests m workers and there
are n ×m tasks, then the fast computers will process more tasks than the slow machines,
eliminating the load-balancing problem when n is large.

We use the multidimensional stochastic optimal growth problem to illustrate the efficiency
of the DPSOL algorithm. In particular, we solve the problem

V (k, θ) = max
c≥0,l≥0,k+,θ+

u(c, l, k+) + βE{V (k+, θ+) | k, θ, c, l}

s.t. k+ = F (k, l, θ)− c
k+ ∈ [k, k̄] ,

where k, k+ ∈ Rd are the continuous state vectors, θ, θ+ ∈ Θ = {θj = (θj,1, . . . , θj,d) : 1 ≤
j ≤ N} are discrete state vectors, c and l are the actions, β ∈ (0, 1) is the discount factor,
u is the utility function, and E{·} is the expectation operator. Here k+ and θ+ are the
next-stage states dependent on the current-stage states and actions, and they are random.

We let k, θ, k+, θ+, c, and l are d-dimensional vectors with d = 10, making a DP
problem with ten continuous states and ten states taking on discrete values. We choose
β = 0.8, [k, k̄] = [0.5, 3.0]d, F (k, l, θ) = k + θAkαl1−α with α = 0.25, and A = 1−β

αβ
= 1, and

u(c, l, k+) =
d∑
i=1

[
c1−γ
i

1− γ
−B l1+η

i

1 + η

]
+
∑
i 6=j

µij(k
+
i − k+

j )2,

with γ = 2, η = 1, µij = 0, and B = (1 − α)A1−γ = 0.75. Moreover, we assume θ+
1 , . . . , θ

+
d

are independent and the possible values of θi and θ+
i are a1 = 0.9 and a2 = 1.1, and the

probability transition matrix from θi to θ+
i is

P =

[
0.75 0.25
0.25 0.75

]
,

for each i = 1, . . . , d. That is,

Pr[θ+ = (aj1 , . . . , ajd) | θ = (ai1 , . . . , aid)] = Pi1,j1Pi2,j2 · · ·Pid,jd ,

where Piα,jα is the (iα, jα) element of P , for any iα, jα = 1, . . . , 2 with α = 1, . . . , d. Therefore,

E{V (k+, θ+) | k, θ = (ai1 , . . . , aid), c, l}
=

∑2
j1,j2,...,jd=1 Pi1,j1Pi2,j2 · · ·Pid,jdV (k+

1 , . . . , k
+
d , aj1 , . . . , ajd) .
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Table 5: Results for parallel stochastic optimal growth problem with d = 10.

Wall clock time for all 4 VFIs 20,019 seconds
Total CPU time used by all workers 1,166,767 seconds

Mean CPU time for the workers 18,230 seconds
Standard deviation CPU time for the workers 469 seconds

Number of (different) workers 64
Overall parallel performance 92.64%

Our value function iteration method approximates the continuous dimensions with a
degree three complete Chebyshev polynomial approximation with 1 + 2d2 + 4d(d − 1)(d −
2)/3 = 1161 nodes. Use use NPSOL to solve the individual optimization problems. Since
the number of possible values of θi is 2 for i = 1, . . . , d, the total number of tasks for one
value function iteration is 2d = 1024. Under Condor, we assign 64 workers to do this parallel
work. After running 4 value function iterations (VFIs), we obtain the results in Table 5,
where the last line shows that the parallel efficiency of our parallel numerical DP method is
very high.

6 Future Extensions

Our modeling framework is meant to be extensible by both developers and users to suit
their modeling needs. Many extensions are planned, and others are under development.
In particular, we are planning to introduce fully dynamic computable general equilibrium
models and to augment the set of building blocks available to assemble a model for par-
ticular studies. These building blocks include capital and product vintages (Benhabib and
Rustichini, 1991, Cadiou et al., 2003, Salo and Tahvonen, 2003) and overlapping consumer
generations (Auerbach and Kotlikoff, 1987), which are necessary when studying distribu-
tional impacts (Fullerton, 2009, Fullerton and Rogers, 1993). We plan to add features such
as private learning, research and development, and technology adoption (Boucekkine and
Pommeret, 2004, Futagami and Iwaisako, 2007, Hritonenko, 2008, Zou, 2006), which add
differential equations to the optimal control problem solved by each industry. Consumer
modeling will be extended to include household production functions, nonseparable utility
functions, and heterogeneous beliefs. We will also augment our policies to include floors and
ceilings on cap-and-trade programs, permit banking and expiration, dynamic tax rates, and
revenue recycling policies. Future enhancements to the approximation, optimization, and
quadrature methods in DPSOL will allow us to solve significantly larger problems dynamic
stochastic problems.
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